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ABSTRACT 
 
 
 

It is desirable in many applications for a mobile robot to track and follow a person. 

There have been various efforts in literature to create person-tracking robots. However, 

current person-tracking robots are not capable of operating in unstructured environments. 

The problem of creating a person-tracking mobile robot has been studied by many 

researchers in literature. There are two main issues associated with this problem. The first 

issue is to equip a robot with proper sensory devices so that it is able to identify and 

locate the target person in a crowd in real time. Various approaches have been 

investigated, including vision, infrared sensors, ultrasonic sensors, and other approaches. 

The second issue is to control and navigate the robot so that it follows the target person 

within a certain distance. This seems simple, but in reality it is a fairly difficult task. For 

example, if the target person is in a busy corridor with many people standing and walking, 

the robot has to constantly avoid other people while following the target. There is still no 

reported evidence that a person-tracking robot has been implemented that is able to track 

a person in arbitrary environmental conditions. 

In this research, by using an innovative RF/ultrasonic sensor system, an intelligent 

person-tracking mobile robot is to be implemented that is able to follow the target person 

in unstructured, practical environments. The main focus of the thesis is development and 

implementation of control algorithms. 
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EXECUTIVE SUMMARY 
 
 
 

A person-tracking mobile robot is an innovative mobile robot, which is able to 

perform person-following and obstacle avoidance tasks simultaneously. Current person-

tracking robots are not fully capable of operating in unstructured environments. The 

objective of this thesis is to develop a person-following mobile robot capable of operating 

in unstructured or semi-structured environments. 

The problem of creating a person-tracking mobile robot has been studied by many 

researchers in literature. There are two main issues associated with this problem. The first 

issue is to equip a robot with proper sensory devices so that it is able to identify and 

locate the target person in a crowd in real time. Various approaches have been 

investigated, including vision, infrared sensors, ultrasonic sensors, and other approaches. 

The second issue is to control and navigate the robot so that it follows the target person 

within a certain distance. This seems simple, but in reality it is a fairly difficult task. For 

example, if the target person is in a busy corridor with many people standing and walking, 

the robot has to constantly avoid other people while following the target person. There is 

still no reported evidence that a person-tracking robot has been implemented that is able 

to track a person in arbitrary environmental conditions. 

An RF/ultrasonic positioning system is utilized in this thesis for identifying and 

locating the target person.  This system includes two ultrasonic receivers along with an 

RF transmitter installed on the top of the robot, and eight ultrasonic transmitters along 

with an RF receiver carried by the target person. The function of this system is to 

measure the relative position of the target person in terms of ranges and bearings in real 

time. The target information serves as a part of the control inputs to the robot system in 

performing the person-tracking task. 

The mobile robot has a sonar system that includes 16 sonar sensors arranged in a 

ring. The function of this system is to measure the distance and the direction of obstacles. 

The information of the obstacle from the sonar sensors is another part of the inputs. By 



 xvi 

using this information, the robot is able to avoid the obstacles encountered during the 

person-tracking task. 

The overall algorithm used in this thesis includes two major sub-algorithms, the 

potential field algorithm and the obstacle avoidance algorithm. By regarding the readings 

from the RF/ultrasonic positioning system and the sonar system as the attractive forces, 

the potential field algorithm is to compute the resultant force from those attractive forces, 

and furthermore convert it into translation velocity and steering velocity, which control 

the motion of the robot. The obstacle avoidance algorithm is executed when the robot is 

too close to the obstacles. 

Four main experiments are conducted to validate the person-tracking ability of the 

mobile robot using an RF/ultrasonic positioning system. The first experiment is 

conducted to verify the normal function of the mobile robot using a direct person-

tracking condition without any obstacle between the target person and the robot. The 

second experiment is designed to add the obstacle in the procedure of person-tracking 

task, and examine the ability of the robot to implement obstacle avoidance and person- 

tracking simultaneously. The third experiment is for examining the ability of the robot in 

a situation where the robot needs to maintain tracking of the target person during a turn at 

a corner. The fourth experiment is based on the examination of the robot behavior in a 

general environment, which is unstructured.  

Based on experiment results, the feasibility of developing a person-tracking 

mobile robot system using an RF/ultrasonic positioning system is established. 
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I. INTRODUCTION 

A. PERSON-TRACKING MOBILE ROBOT 
A person-tracking mobile robot is a robot that follows a specific person while 

simultaneously implementing obstacle avoidance. The robot follows only the target 

person and regards all other objects as obstacles. This means that even if there are several 

people walking around the environment, the robot should follow this specific person and 

avoid others. Therefore, any instances of the robot following the wrong person should be 

handled in the implementation of person-tracking. 

A Nomad 200 mobile robot with an additional RF/ultrasonic positioning system 

has been adopted to implement person-tracking. The first stage is person positioning. 

Ultrasonic signals are transmitted from several transmitters located on a specially made 

vest, which the target person wears. The signals are received by two receivers located on 

the top of the robot. Those signals are then processed to produce a part of the control 

inputs, which are in the form of distances and angles, to the robot algorithm. In the 

second stage, the robot is equipped with 16 sonar rangefinders in a ring, which has a 22.5 

degree angle between every two adjacent units. Those 16 sonar units transmit the sonar 

waves and receive the echoes sequentially to compute the distance between robot and 

obstacles in every direction. Finally, using the 16 distance data along with the readings 

from the ultrasonic positioning system, a potential field based motion algorithm [1] is 

formed. (The potential field based motion algorithm will be discussed in Chapter III.) 

Additionally, several specific sub-algorithms will be implemented when the robot is too 

close to the obstacles. Therefore, person-tracking and obstacle avoidance can both be 

implemented concurrently in unstructured environments. 

The 16 sonar rangefinders and RF/ultrasonic positioning system operate using 

similar acoustic principles with partial differences. In order to avoid confusion, the 

original 16 rangefinders are named “sonar rangefinders,” “sonar sensors,” or “sonar 

units,” and the additional positioning system is named “ultrasonic positioning system,” 

“ultrasonic sensor,” or “ultrasonic unit” in this thesis. More detailed description will be 

illustrated in Chapter II. 
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B. MOTIVATION 
It is desired in many applications that the mobile robot be able to track and follow 

a person. There have been various efforts in literature to create person-tracking robots. 

However, current person-tracking mobile robots are not capable of operating in 

unstructured environments. Because several main approaches, such as vision and infrared 

sensors, are not fully reliable in all situations, it is necessary to explore other methods. 

The main objective of this research is to investigate the feasibility of developing a 

person-tracking robot system using an RF/ultrasonic positioning system. 

C. SEVERAL APPROACHES TO THE PERSON-TRACKING ROBOT 

1. Vision-Based Approach 

This is an approach using a camera to capture the image of the target person. The 

image has to be updated in real-time. This method assumes that the target person 

detection is successful, although this may always be a challenge. After detecting the 

target person in an image, the control information, including directions and distances, 

will be computed from the variations of the target position and size in the image. The 

robot should then be able to move toward the target person based on this information. 

Numerous researches [2-15] have adopted and adapted this approach to develop the 

person-following mobile robots. However, several uncertainties can still be significant 

enough to influence the efficiency of target detection. One factor that affects the detection 

is light condition. Determining the target person in the image can be relatively more 

difficult when the color or brightness of the target is not outstanding enough to make it 

different from that of the background or other obstacles. Another factor that affects 

detection is the simultaneous motion of both person and robot. The vision sensor can 

easily lose the target person when the target person moves too fast. Some researchers 

used active cameras. This reduced the problem of losing the target person, but increased 

the difficulty in the algorithm design. This approach is not suitable for the robot to 

perform obstacle avoidance. It is difficult for the robot to tell the difference between the 

target person and other obstacles. The situation will only be worse when there are several 

persons moving around in the same environment. It is possible and likely for the robot to 

lose the target person if the environment is unstructured. 
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2. Non-vision Based Approach 
A non-vision based approach uses several kinds of rangefinders, such as sonar 

sensors, infrared sensors, and others. Each rangefinder on the robot can determine the 

distance between the nearest object and the rangefinder itself. Because the robot is not 

able to distinguish between object and target person, this approach can only be adopted to 

implement either obstacle avoidance when regarding all the objects as obstacles or 

person-tracking when the target person is always the nearest object to the robot without 

any obstacle in between. Using a Nomad 200 mobile robot equipped with 16 sonar 

rangefinders, the distance of the object can be computed by the nearest sonar unit, and the 

approximate direction also can be determined from the relative location of the sonar unit, 

which detects the nearest distance. The robot can be efficiently programmed to 

implement obstacle avoidance. However, to additionally implement person-tracking task, 

even in an environment with a fixed condition, is still difficult and not practical. 

3. Transmitter-and-receiver Based Approach 

Using a transmitter-and-receiver approach, the transmitters located on the target 

person transmit signals, such as ultrasonic waves or blinking LED. The receivers located 

on the robot receive those signals. After computing the distance and the angle of the 

target person from those signals, the robot knows where to move in order to turn itself 

toward the target person and decrease the distance in between. In [16], two transmitter-

and-receiver based approaches have been discussed. 

a. Person Tracking Using Blinking LED Devices 
This approach requires equipping the target person with two infrared LED 

devices with fixed distance between them and using a camera on the robot to detect the 

two devices. This is similar to the vision-based approach. The main difference is that the 

signals from infrared LED devices should be firmer and not affected by the disturbance in 

the environment, as long as they are not blocked by any obstacle. The camera is able to 

rotate to keep the target person in the middle of the image. By computing the distance 

between two LED lights and the deviation of the two lights from the central vertical axis 

in the image, the range and the bearing of the target person can be obtained respectively 

by the robot.  
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b. Person Tracking Using an Ultrasonic Positioning System 
This approach is to equip the ultrasonic transmitters on the target person 

and the receivers on the robot. By computing the time interval between transmitting and 

receiving the ultrasonic signal, the distance between the target person and the robot will 

be determined. The angle can also be computed from the time delay between several 

receivers. 

 These approaches are straight-forward for person-tracking, but they are not 

suitable when there are obstacles between the target person and the robot. The detection 

of obstacles will be a problem using these approaches. Without any additional 

mechanism, the robot is not able to implement obstacle avoidance. 

4. Intelligent Space Approach 
The intelligent space approach [17,18] utilizes several sensors, such as visual or 

non-visual sensors that are located in the environment to detect both the robot and the 

target person. Therefore, the position information of the robot and target person will be in 

the global coordinate and determined by the sensors in the intelligent space. From the 

relative positions of the robot and the target person, the robot motion will be planned by 

this intelligent space and controlled through the network. However, the desired approach 

in this research is to design an autonomous robot that implements tasks in unstructured 

environments. This approach then becomes unsuitable although it may be well-

functioned. 

5. Combined/Multi-Modal Approach 
A combined/multi-modal approach [19] is made of a combination of several 

approaches. It is able to gather the advantages of each single approach. This is also the 

key subject in this thesis. By using an ultrasonic positioning system along with the sonar 

rangefinders, this research combines the transmitter-and-receiver based approach with the 

non-vision based approach. A suitable algorithm also will be designed to adapt the robot 

to several situations that may happen in the implementation of person-tracking. The robot 

can then accomplish the person-tracking tasks, which include person-following and 

obstacle avoidance in unstructured environments. Figure 1 shows the person-tracking 

mobile robot using an ultrasonic positioning system. Figure 2 shows the specially made 

vest equipped with ultrasonic transmitters.  



 
Figure 1.   Person-Tracking Mobile Robot using an Ultrasonic Positioning System. 

 

 
Figure 2.   Specially Made Vest and Ultrasonic Transmitter. 

 

 

 

5 



6 

D. THESIS OBJECTIVES 
The main idea in this thesis is to investigate the feasibility of developing a person-

tracking robot system using an ultrasonic positioning system, besides the 16 sonar 

sensors equipped on the Nomad 200 mobile robot. Furthermore, it will be proven to be 

the most reliable way to create a person-tracking mobile robot after completing the 

following steps. 

1. Create the interface between the ultrasonic positioning system and the robot 

system in the operating program. 

2. Design an algorithm that is able to simultaneously avoid obstacles and track 

the designated person in an unstructured environment. 

3. Complete the task of person-tracking when there is no obstacle between the 

robot and the target person. 

4. Complete the task of person-tracking when there is an obstacle between the 

robot and the target person. 

5. Complete the task of person-tracking when the target person makes a turn at 

a corner. 

6. Complete the task of person-tracking in an unstructured environment. 

E. THESIS OUTLINE 
A basic conception of the person-tracking mobile robot and the objectives of this 

thesis that will make a breakthrough in literature are summarized in Chapter I. The 

system architecture, including the hardware and the system configuration is described in 

Chapter II. The complete algorithm of the person-tracking mobile robot is illustrated in 

Chapter III. Several scenarios used to examine the motion of the robot and the results are 

described in Chapter IV. This thesis concludes in Chapter V. The C++ code used to 

implement the overall function of the robot is attached in the Appendix. 



II. SYSTEM ARCHITECTURE 

A. ULTRASONIC POSITIONING SYSTEM 
The ultrasonic positioning system used in this research was made by 

SJAutomation L.L.C. The system was originally used to perform target tracking as a 

fixed, sensor system. By equipping two ultrasonic receivers at two fixed points in the 

environment, the system can continuously track the position of the target, which is 

equipped with the ultrasonic transmitters. The precision of target tracking is better if the 

distance between the two receivers is longer, as long as the receivers are in the effective 

range of the ultrasonic waves. In this research, the functions of the system are similar. 

The difference is that the system is mounted on the robot, so that the locations of the 

receivers are no longer fixed, but vary continuously while the robot is moving. Only the 

distance between two receivers is fixed. The ultrasonic positioning system can compute 

the relative position of the target from the robot in the form of range and bearing, in 

inches and degrees respectively. 

Besides the ultrasonic transmitters and receivers, the ultrasonic positioning system 

includes also the RF (Radio Frequency) transmitter and receiver. The RF transmitter and 

receiver are mounted near the ultrasonic receivers and transmitters, respectively, as 

shown in Figure 3. The RF transmitter sends an electromagnetic signal to the RF receiver 

to request the ultrasonic signals from the ultrasonic transmitters. As soon as the RF 

receiver gets the RF signal, the ultrasonic transmitters transmit ultrasonic signals. 

Meanwhile, the ultrasonic receivers start to wait for the ultrasonic signals. The RF signal 

travels at the speed of light. As a result, the time spent for the RF signal to travel from the 

RF transmitter to the RF receiver is relatively short and can be neglected. 

The algorithm of the ultrasonic positioning system, corresponding to Figure 3, is 

to compute the distance, , between the target and the center of the two ultrasonic 

receivers, and the target bearing, . The distance between the ultrasonic receivers, , is 

a fixed value. Assume that the time intervals for Receiver B and Receiver A to receive 

the signal transmitted from the transmitter are  and  respectively. The distances 

between both receivers and the transmitter can then be obtained by 

*D

γ d

1t 2t
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22 tvD =      (2.2) 

where 

.SoundofSpeedv =             (2.3) 

As a result, , , and , are regarded as known. From the side-angle relations, the 

parameters in Figure 3 can be computed as follows: 
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Figure 3.   Ultrasonic Positioning System. 
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 The ultrasonic positioning system is configured to measure the angle of the target 

between  and . The value will be positive when the target is on the left-hand 

side of the central vertical axis, and negative on the right-hand side. Therefore, the angle, 

, is obtained by 

o90− o90

γ

.90 βγ −= o         (2.7) 

By combining Equation 2.4 with Equation 2.5, the target distance, , can be computed 

in the following equation. 
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By combining Equation 2.6, Equation 2.7, and Equation 2.8, the target bearing, , can 

be computed by 
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The maximum distance, which can be measured from the target, depends on the 

maximum length of the time interval, which allows the receivers to wait for the signal to 

arrive. After this interval, the receivers will no longer receive signals until they are 

triggered again for the next cycle. The maximum time interval is called the “window.” 

The maximum window size in this research has been configured as 20 milliseconds, in 

which the ultrasonic wave can travel 270  inches in room temperature, C, 

approximately. When the signal arrives in less than 20 milliseconds, the system will shut 

down the window immediately after the first signal has been received. Otherwise, the 

system will only wait for 20 milliseconds and simply close the window right away, 

o20

9 
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whether the signal has been received or not. When no signal is received, the values of the 

distance and the angle are not updated and remain the same as the last values. 

B. ROBOT SYSTEM 
The Nomad 200 mobile robot was made by Nomadic Technologies, Inc. This kind 

of robot uses a multiprocessor as a low level control system to control the sensing, 

communications, and motors. A remote workstation with Linux operating system is used 

as a high level control system to communicate with the robot multiprocessor and the 

ultrasonic positioning system through the wireless network. A laptop mounted on the 

robot can also be used to substitute the remote workstation. 

The robot system is controlled using the C/C++ programming language. The 

information about the sensor systems and the motor state are stored in a global array, 

called “State Vector” [20, 21]. The reference to the states is shown in Table 1. In this 

section, several sensor systems equipped on the robot will be explained. 

 
 Name State Vector 

0 STATE_SIM_SPEED Speed of Simulation 

… … … 

17 STATE_SONAR_0 Sonar Data #0 

18 STATE_SONAR_1 Sonar Data #1 

19 STATE_SONAR_2 Sonar Data #2 

… … … 

32 STATE_SONAR_15 Sonar Data #15 

33 STATE_BUMPER Bumper Data 

34 STATE_CONF_X X Position 

35 STATE_CONF_Y Y Position 

36 STATE_CONF_STEER Steering Angle 

… … … 

38 STATE_VEL_RIGHT Velocity of the Right Wheel 

39 STATE_VEL_LEFT Velocity of the Left Wheel 

… … … 

41 STATE_MOTOR_STATUS Motor Status 

44 STATE_ERROR Error Number 

Table 1. The State Vectors of the Robot System. 



1. Bumper Sensors 
The bumper sensors provide a mechanism that can be used to prevent damage to 

the robot motors when the robot runs into something. There are six individual bumper 

sensors arranged in a ring located on the robot. The  bumper sensor represents the 

bit in the STATE_BUMPER vector, while the  bit is the least significant one. A bit of 

the vector is set to 1 when the corresponding bumper is hit. In the robot algorithm, the 

robot simply stops when any of those bumpers is hit; that is, when the STATE_BUMPER 

vector is greater than 0. In Figure 4, the arrangement of the bumper sensors is presented. 

thn thn  
th0

0 

Front 1 5 

2 4 

3  
Figure 4.   The Arrangement of the Bumper Sensors. 

2. Sonar Sensors 
There are 16 sonar units arranged in a ring located on the robot. In Figure 5, the 

arrangement of the sonar sensors is presented. The sonar units are numbered in counter-

clockwise order beginning with the front of the robot. They emit sonar waves and receive 

echoes consecutively in this order, with a blanking period between each cycle of emitting 

and receiving. Note that the blanking period starts after the end of the processing of the 

previous sonar sensor, and ends before the beginning of the next one. The fire rate of the 

sonar sensors can then be adjusted by varying this period. In this research, the blanking 

period has been configured to be 50ms. From the time interval between the transmission 

of the sonar wave and the receiving of the echo, the distance between the robot and 

obstacles can be determined. The sonar sensors can measure distances from 6 inches to 

11 



255 inches. If an echo is not received, the sensor will regard the distance as 255 inches. 

The distance information will be stored in the state vectors, STATE_SONAR_0 to 

STATE_SONAR_15.  

0 1 

12 
The parameter, , is the sound speed. 

 
Figure 5.   The Arrangement of the Sonar Sensors. 

 
Figure 6.   The Processing of a Sonar Sensor. 

The method used to compute the distance between the robot and the obstacle by 

the sonar sensor is relatively more straightforward, as compared with the algorithm used 

in the ultrasonic positioning system. Figure 6 shows a scenario in which the distance, , 

needs to be computed. Assume the time spent for the sonar sensor to receive the echo 

after the transmission of the sonar wave is T , which is a round-trip time period. The 

distance, , is obtained by the following equation. 

L

L

.2/TvL =             (2.10) 
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ated consecutively in state vectors, 34 to 41. 

The va

ocity of 

C. INTE ING SYSTEM 

 ystem and the sonar sensors were previously two 

shows the values of the timing parameters in Figure 8. 

3. Motor/Motion Sensors
The motor/motion information is upd

lues of STATE_CONFIG_X and STATE_CONFIG_Y are the integrated x-

coordinate and y-coordinate positions, which are in 1/10 of inches, with respect to the 

start positions. The value of STATE_CONF_STEER is the robot steering angle in 1/10 of 

degrees, with respect to the start orientation. It is in the range, )3600;0[ . As for the 

vectors, STATE_VEL_RIGHT and STATE_VEL_LEFT are the vel the right and 

left wheels in 1/10 of inches per second. The state vector of the motors, that is, 

STATE_MOTOR_STATUS, presents the statuses of the motors. Figure 7 shows the 

details of the status values. 

ES CH AC B1 B0 R L  

7 6 5 4 3 2 1 0 

 

L

R : set when the right wheel  in m tion   L :  w le heel is in motion 

he batteries are charging 

 is o       set hen the ft w

AC : set when the Scout is plugged into an AC source 

CH : set when the Scout is plugged into an AC source and t

B1, B0 :    0, 0 Low Battery    0, 1 Med Battery    1, 0 High Battery    1, 1 Reserved 
ES : set when the Emergency-Stop is down (always 0 for robots without E-Stop) 

Figure 7.   The Values of the Motor State Vector Bitmap. 

RACTION BETWEEN ULTRASONIC POSITION
AND SONAR SENSORS 
The ultrasonic positioning s

independent systems with their own periods. Their periods can be adjusted as short as 

possible to speed up the reaction of the robot. For example, the blanking period between 

two processes of sonar sensors can be adjusted to as little as 2 milliseconds. However, 

according to the experiments, the interference of both acoustic waves between the two 

sensor systems can be so significant that the readings of distances and angles become 

irrationally large. The robot may finally run out of control and probably crash into 

something. The best way to resolve this issue is to prevent the processes of the two 

systems from overlapping. An approach similar to the asynchronous handshake is used. 

Figure 8 shows the process timing diagrams of the ultrasonic and sonar devices. Table 2 
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Process Timing Diagrams of Sonar and Ultrasonic Devices. 

Parameter Name Symbol Value 

 
Figure 8.   

Ultrasonic Init 
Pulse 

Sonar Init 
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Sonar Echo 
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Transmission 

Windows 
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Time needed to receive th
after sonar wave is transtransmission window 1 

e echo 
mitted 

(20 ms maximum) 
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sion wi 2_ windowsonart  after sonar wave is transmitted 
(20 ms maximum) 

Sonar blanking period 2_1 waitwindowultrasonicwait ttt ++  50 ms 
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ting per
before the transmission 1waitt  20 ms 
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tra w 20 ms m nsmission windo windowultrasonict _   maximu
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After the transmission 
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Table 2. Timing Parameters. 

f the sonar init pulse starts when the sonar wave is being 

transmitted, and this pulse is terminat  of the echo pulse; that is, the 

The beginning o

ed by the rising edge
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sonar t

te their 

process

 sonar sensor system, motor system, bumper 

nic positioning system are presented in this chapter. In order to 

ransmission window will be closed as soon as the echo is received. As for the 

transmission of the ultrasonic wave, after the falling edge of the sonar init pulse, the 

ultrasonic positioning system waits 20 milliseconds for the sonar waves to die out, and 

immediately transmits a kind of electromagnetic signal from the RF transmitter to the RF 

receiver on the target to request ultrasonic signals. The time needed for the 

electromagnetic signal to travel to the target is relatively short and can be neglected. 

Simultaneously, the ultrasonic positioning system opens a window with a maximum 

length of 20 milliseconds for the ultrasonic wave (transmitted from the ultrasonic 

transmitters) to arrive. Therefore, there will be no overlap between the processes of both 

sonar sensor and the ultrasonic sensor. The interference problem can be avoided.  

Because of the longer time interval that is configured between the processes of 

any two sonar sensors, the time needed for all 16 sonar sensors to comple

es once, will be relatively longer. As a result, the speed to update the information 

of the obstacle distances will not be fast enough for the robot to react. An effective 

approach to deal with the speed issue is to enable only the front 5 sonar sensors - since 

only sonar sensors in the front of the robot are needed for this forward-motion-only 

implementation, and since there is no significant influence to turn off those other sonar 

sensors in the back during the implementation. The time needed for the same sonar 

sensor to transmit again will be sufficiently shortened. Therefore, the person-tracking 

implementation can obtain a better result. 

D. SUMMARY 
 The system architecture including

sensor system, and ultraso

adapt the ultrasonic positioning system to the original robot system, the interference 

between the sonar sensor system and the ultrasonic positioning system should be avoided. 

An asynchronous handshake method is adopted to schedule the actions of these two 

systems that address this situation. Furthermore, to accelerate the reaction of the robot, a 

limited number of the sonar sensors, which are indispensable for most person-tracking 

conditions, are used in the implementation. 
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III. ALGORITHM 

A. POTENTIAL FIELD ALGORITHM 

1. Robot Coordinate 
The coordinate used in the potential field algorithm is the robot coordinate. Since 

the robot is moving on a flat surface, there are only two dimensions. The origin is the 

robot center. The two axes, x-axis and y-axis, are toward the front and the left of the robot, 

respectively. The diagram for the robot coordinate is shown in Figure 9. 

O

Front

Left

x-axis 

y-axis 

 
Figure 9.   Robot Coordinate. 

2. Attractive Forces Derived From the Readings of the Ultrasonic Sensor 
The attractive forces in the two axes of the robot coordinate are computed from 

the distance, , and the bearing, . Figure 10 shows an example presenting these two 

attractive forces,  and , in x-axis and y-axis respectively. They are 

computed as follows: 

*D γ

xultrasonicF _ yultrasonicF _

)cos(*
_ γDF xultrasonic =     (3.1) 

.)sin(*
_ γDF yultrasonic =     (3.2) 
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xultrasonicF _Target

Robot

γ

 
Figure 10.   Attractive Forces Derived From the Readings of the Ultrasonic Sensor. 

3. Attractive Forces Derived From the Readings of Sonar Sensors 

The simplified diagram of the sonar sensor readings is shown in Figure 11. In the 

potential field algorithm, the distance values measured by the sonar sensors are regarded 

as the attractive forces. According to several experiments, assuming the robot is always 

facing the target and all the sonar sensors are in use, the combined force in x-axis may 

cause severe oscillations in the robot motion when the robot is close to the target. This 

occurs because of the following situation. When the robot is near the target, the distance 

readings of the sonar sensors in the front of the robot are smaller than those in the back. 

The combined force derived from these readings forces the robot to go backward. As 

soon as the robot moves backward, the attractive force derived from the readings of the 

ultrasonic sensor increases and forces the robot to go forward, resulting from the increase 

in the distance between the robot and the target. In addition, there are processing and 

network delays in the implementation. It will not be easy for the robot to settle down to a 

balance point because of those delays. Therefore, it is not necessary to adopt this part of 

the attractive force, which introduces oscillations. To deal with this issue, only the 

weights in y-axis of the attractive forces are used in computing the combined force. 
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Figure 11.   Distances Measured by Sonar Sensors. 
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Figure 12.   Combined Force Derived From the Readings of the Sonar Sensors. 
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Therefore, the combined force in x-axis, 

 .      (3.3) 0_ =xsonarF

 The combined force in y-axis can be computed as follows: 

∑
=

=
15

0
_ )sin(

n
nysonar ndF φ      

where . Since only five of the sonar sensors in the front of the robot are used in 

the implementation, the equation becomes 

o5.22=φ

).14sin()15sin()1sin()2sin( 141512_ φφφφ ddddF ysonar +++=       (3.4) 

 Figure 12 shows how the attractive forces will react when the robot encounters an 

obstacle. If the obstacle is on the right of the robot, the distance readings of the 14th and 

the 15th sonar sensors will be smaller. As a result, the combined attractive force will be 

toward the left. 

4. Potential Field Motion Planning From Combined Forces 

RobotRobot

Obstacle

Target

Obstacle

Target

xresultantF _

yresultantF _

resultantF

 
Figure 13.   Resultant of the Attractive Forces. 
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The potential field motion planning is using the resultant of the attractive forces, 

which are derived from the readings of the ultrasonic positioning system and the sonar 

rangefinders. Figure 13 presents an example of the robot motion, which is corresponding 

to the resultant force, at exactly the moment of the relative position shown in the figure. 

The resultant force intends to drive the robot toward the target and away from the 

obstacle at the same time. It will be updated consecutively to control the motion of the 

robot in real time.  

The resultant force can be computed as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
=

yresultant_

xresultant_
resultant F

F
F      (3.5) 

xsonarxultrasonicxresultant_ FKFKF _3_1 +=            (3.6) 

._4_2 ysonaryultrasonicyresultant_ FKFKF +=           (3.7) 

where , , , and  are adjustable and act as weighting parameters. Since the 

force, , is equal to 0, the parameter, , is meaningless and has no effect on the 

robot motion. In this research, those parameters are adopted according to numerous 

experiments, which include observing the behaviors of the robot in different situations 

and adjusting the values of the parameters. Those parameters are as follows: 

1K 2K 3K 4K

xsonarF _ 3K

⎪
⎩

⎪
⎨

⎧

=
=
=

.10
20
15

4

2

1

K
K
K

     (3.8) 

An additional limit to the force, , is used to prevent the combined force 

from the sonar sensors from becoming much larger than that from the ultrasonic sensor. 

That is, if

ysonarF _

yultrasonicysonar FKF _5_ ≥ , the equality, yultrasonicysonar FKF _5_ = , will be used. 

The parameter, , in this case is set to be 0.75. 5K

5. Resultant Forces to Translation and Steering Velocities Conversion 
In order to control the motion of the robot, the translation and steering velocities 

should be determined. In the potential field algorithm, the resultant forces,  xresultant_F
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and , are converted to translation velocity and steering velocity, respectively. 

They are obtained as follows: 

yresultant_F

))10/1((1 inches/secFGV xresultant_ntranslatio =     (3.9) 

).)10/1((2 cdegrees/seFGV yresultant_steering =   (3.10) 

The values of the parameters,  and , are adjustable. In this research, those 

values are chosen as . In addition, a limit to the translation velocity is set to 

prevent the robot from moving too fast. That is, if 

1G 2G

1.021 == GG

)sec/)10/1((120 inchesV ntranslatio ≥ , 

the equality, )sec/)10/1((120 inchesV ntranslatio = , will be used to limit the maximum 

absolute value of translation velocity to be . Those velocities, 

 and , are then the reference inputs to the robot motor system. 

)sec/)10/1((120 inches

ntranslatioV steeringV

B. ALGORITHM USED AS THE TARGET IS IN A CERTAIN RANGE 
When the potential field algorithm is used to implement person-tracking, it is 

necessary to add another mechanism to the overall algorithm, as the robot is close to the 

target in a certain range. Otherwise, the robot will keep approaching until it collides with 

the target. To deal with this, a certain range, which is a suitable distance between the 

robot and the target, should be determined. In this research, the range is adopted to be 65 

inches. To prevent from the oscillation in the robot motion, this distance is not designed 

to be the shortest distance that has to be kept between the robot and the target. Instead, it 

is a signal from the distance reading of the ultrasonic positioning system to tell the robot 

to stop approaching the target. In other words, the robot will set its translation velocity, 

, to be zero when the target is within this range. The distance between the target 

and the robot could be less than this certain range once the robot actually stops, but no 

collision will occur in this case. The oscillation caused by the adjustment to keep a 

certain distance between the robot and the target, will not be an issue in this research. 

ntranslatioV

Except for the termination of the translation velocity, the steering velocity of the 

robot is still active when the target is in the range of 65 inches. With this steering velocity, 

the robot simply turns itself to face the target without displacement in position. Again, to 

prevent oscillation while the robot is trying to adjust itself to keep the angle reading of 
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the ultrasonic positioning system to be zero, an elastic range is determined to be from 

 to . When the angle reading from the ultrasonic sensor is within this range, the 

robot will set its steering velocity, , to be zero. Therefore, the robot will be 

physically motionless when the range and bearing conditions are satisfied. When the 

target begins moving out of those ranges, the robot will activate itself again to implement 

all the relative movements in tracking the target. 

o10− o10

steeringV

When the target range, , the velocities,  and , in this 

algorithm can be determined as follows: 

65<∗D ntranslatioV steeringV

0=ntranslatioV         (3.11) 

⎩
⎨
⎧

≤
>

=
.10,0

10,_3

γ
γyultrasonic

steering

FG
V     (3.12) 

The parameter, , is an adjustable constant, and it is set to be 2 in the implementation. 

And the parameter, , is the target bearing obtained by the ultrasonic sensor. 

3G

γ

C. OBSTACLE AVOIDANCE ALGORITHM 
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By using the potential field algorithm, the robot can already implement obstacle 

avoidance when the distance between the robot and the obstacle is not too short. However, 

the function required for obstacle avoidance is not fully complete. The two senor systems, 

ultrasonic sensor and sonar sensors, have to operate in coordination with each other. The 

adjustment in the values of the parameters in one situation may not be suitable in another. 

On the other hand, since an obstacle is always located between the robot and the target, 

the attractive force driving the robot toward the target can be partly regarded as the 

attractive force toward the obstacle. Therefore, it will still be possible for the robot to 

collide with an obstacle, when the attractive force driving the robot away from the 

obstacle is smaller than that driving the robot toward it. To correct this, an additional 

algorithm will be necessary when the robot is near the obstacles. Instead of using only the 

potential field algorithm, the robot system switches its algorithm to the one that is 

specialized in implementing obstacle avoidance. The potential field algorithm takes over 

the system as soon as the situation is resolved. The distance, which is defined to be the 

threshold between the robot and the obstacle, is a range of 12 inches. When the obstacle 



is within this range, the obstacle avoidance algorithm will be implemented. In this section, 

the motion planning will be discussed in three different conditions, which are as follows. 

1. Motion Planning for Obstacles on the Right Forward of the Robot 
In this section, the obstacle is on the right forward of the robot, corresponding to 

Figure 14. When either the 14th or the 15th sonar range is smaller than 12 inches, the robot 

will cease the translation velocity and make a left turn until those sonar readings are 

greater than or equal to 12. As soon as both the sonar ranges are larger than the 12 inch 

threshold, the obstacle avoidance algorithm will be terminated. The potential field 

algorithm will take over the system to carry on the implementation of person-tracking. 

When implementing obstacle avoidance, the steering velocity, , is an adjustable 

parameter and is chosen as 

steeringV

))10/1((110 cdegrees/seVsteering =        (3.13) 

Robot

Obstacle

Target

Robot

Obstacle

Target

PlanningMotionAvoidanceObstacle

PlanningMotionFieldPotential

 
Figure 14.   Motion Planning for Obstacles on the Right Forward of the Robot. 
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2. Motion Planning for Obstacles on the Left Forward of the Robot 
When the obstacle is on the left forward of the robot, it is similar the obstacle 

being on the right forward, as in the previous section. The only difference is that the robot 

will make a right turn when it encounters the obstacle. That is when either the 1st or the 

2nd sonar range is smaller than 12 inches. The potential field algorithm will take over the 

system as soon as this situation no longer exists. When implementing obstacle avoidance, 

the translation velocity, , is set to be 0, and the steering velocity, , is an 

adjustable parameter chosen as in Equation 3.14. 

ntranslatioV steeringV

).)10/1((110 cdegrees/seVsteering −=         (3.14) 

 The negative sign in Equation 3.14 is appended because the robot is making a 

right turn. On the other hand, the positive sign will be used when the robot is making a 

left turn. 

Robot
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Figure 15.   Motion Planning for Obstacles on the Left Forward of the Robot. 
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3. Motion Planning for Obstacles in Front of the Robot 
When there is an obstacle between the target and the robot, the left side and the 

right side sonar ranges both may be smaller than the 12 inch threshold. The robot needs 

to decide which direction to turn in order to escape this problem. In this case, it is 

assumed that the obstacle is relatively small and does not obstruct the line of sight of the 

robot, such that the target transmitter signal can still be received. To deal with this, the 

target bearing is appended to the algorithm. When the target bearing, , is negative, as 

shown in Figure16, the robot will regard a right turn as a better decision to carry out the 

person-tracking task. On the other hand, the robot will make a left turn, when the target 

bearing, , is a value greater than or equal to zero, as shown in Figure 17. As soon as the 

robot turns itself away from the obstacle - when all the sonar ranges are no longer smaller 

than 12 inches - the potential field algorithm will take over the system again to carry on 

the person-tracking task. 

γ

γ

 

PlanningMotionAvoidanceObstacle

PlanningMotionFieldPotential

Robot

Obstacle

Target

Robot

Obstacle

Target

γ

Figure 16.   Motion Planning for Obstacles in Front of the Robot . )0( <γ
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Figure 17.   Motion Planning for Obstacles in Front of the Robot . )0( ≥γ

When implementing obstacle avoidance, the translation velocity, , is set 

to be 0, and the steering velocity, , is an adjustable parameter chosen as following 

equations. 

ntranslatioV

steeringV

⎩
⎨
⎧

<−=
≥=

.0,150
0,150

γ
γ

steering

steering

V
V

    (3.15) 

The parameter, , is the target bearing obtained directly from the readings of the 

ultrasonic positioning system. 

γ

Note that the motion planning methods used in these three situations are 

practically related to one another. For example, the third situation will be led to the first 

or the second situation, when the robot starts to make a turn, which immediately changes 

the sonar statuses.  
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D. OVERALL ALGORITHM OF A PERSON-TRACKING MOBILE ROBOT 
By combining all the sub-algorithms described in this chapter, the simplified 

overall algorithm of a person-tracking mobile robot is shown in Figure 18. Note that there 

is prioritized order when carrying out the algorithm. The idea is to prevent the robot from 

collision, which could damage the robot system. Examining the bumper sensor status has 

high priority over others. When the STATE_BUMPER vector is set, the process should 

go directly to “stop.” IF the STATE_BUMPER is not set, the main algorithm can be 

executed. The algorithm used when the target is in a certain range can be carried out 

before the obstacle avoidance algorithm, since there is no displacement in the robot’s 

position when implementing this portion. Collision is not a concern in this case.  
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Figure 18.   Overall Algorithm Flowchart. 
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When the target moves out of a 65 inch range, the system will examine the sonar 

states to determine if there are obstacles standing in the path. When the sonar ranges are 

smaller than the 12 inch threshold, the action for obstacle avoidance should be made. In 

the event that the former situation no longer exists, the potential field algorithm is carried 

out in tracking the target. 

E. SUMMARY 
In this chapter, the algorithms used to address several major motion control 

situations are illustrated in detail. The prioritized order to implement those algorithms is 

also described. One thing worth mentioning is that the termination of the robot program 

can be done either when the STATE_BUMPER vector is set or by terminating it directly 

on the remote workstation. 
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IV. EXPERIMENTS AND RESULTS 

A. PERSON-TRACKING IMPLEMENTATION WITHOUT OBSTACLES 
In this section, an experiment will be implemented to verify the ability of the 

person-tracking mobile robot in an obstacle-free situation. Figure 19 shows the procedure 

of this experiment. The robot attempts to follow when the target person is moving, and 

finally keeps itself within a certain range when the target person stops. Note that the robot 

trajectory can be recorded by the remote workstation. As shown in the figure, the 

trajectory is intentionally presented in several time scales, by which the interaction 

between the target person and the robot can be demonstrated conspicuously. According to 

the result of this fundamental test, as shown below, the completeness of the normal 

person-tracking ability performed by the robot is ensured. Therefore, other factors, such 

as obstacles and persons other than the target, can be included in further experiments. 

Those experiments with different situations will be discussed in the later sections. 

Tt 4=Tt 3=

Tt 2=Tt =

PositionTargetPositionRobot:LEGEND

 
Figure 19.   Robot Trajectory in an obstacle-free situation. 
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B. PERSON-TRACKING IMPLEMENTATION WITH AN OBSTACLE 
BETWEEN THE ROBOT AND THE TARGET PERSON 

 In this section, two main experiments will be carried out to verify the ability of 

the robot to implement obstacle avoidance during person-tracking. The first experiment 

corresponding to Figure 20 is to test the robot’s behavior when the robot encounters an 

obstacle in the midst of person-tracking. The second experiment corresponding to Figure 

21 is similar to the first one. The only difference is that the implementation of obstacle 

avoidance should be completed before the robot can carry out the person-tracking task. It 

is clear to see that the robot does have the ability to avoid the obstacle and accomplish the 

person-tracking task, which is actually difficult for most applications of the person-

tracking robot in practice. 

Tt 5

Tt 4=Tt 3=

Tt 2=Tt =

PositionTargetPositionRobot Obstacle:LEGEND

 
Figure 20.   Robot Trajectory when encountering an obstacle. 
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Note that the obstacle is right in front of the robot in the second experiment 

corresponding to Figure 21. The robot should know which way to turn to avoid the 

obstacle simply by the target person’s movement. As long as the target person moves 

away form the line of sight of the robot, the robot will turn according to the angle of the 

target person. The algorithm used has been described in Chapter III. 

 

Tt 5=

Tt 4=Tt 3=

Tt 2=Tt =

PositionTargetPositionRobot Obstacle:LEGEND

Figure 21.   Robot Trajectory when there is an obstacle between the robot and                       

the target person in the beginning of the person-tracking task. 

C. PERSON-TRACKING IMPLEMENTATION WHEN THE TARGET 
PERSON MAKES A TURN AT A CORNER 

 In this section, an experiment will be implemented to verify the ability of the 

robot to carry out the person-tracking task when the target makes a turn at a corner. 

Figure 22 shows the person-tracking procedure and the robot trajectory.  
33 



 

Tt 5=

Tt 3= Tt 4=

Tt 2=Tt =

PositionTargetPositionRobot:LEGEND

Figure 22.   Robot Trajectory when the target person makes a turn at a corner. 
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Turning a corner is a common issue for most applications of the person-tracking 

robot. When the target person moves too fast at a corner, the corner will then become an 

obstacle. The robot will need to avoid the corner during the person-tracking task as 

shown in Figure 22. The feasibility of the robot’s turning a corner has been proven during 

the implementation of this experiment. 

D. PERSON-TRACKING IMPLEMENTATION IN AN UNSTRUCTURED 
ENVIRONMENT 

Since several, sample situations have been coped with successfully, a more 

practical validation will be performed in this section. That is the person-tracking 

implementation in an unstructured environment. An unstructured environment has the 

following conditions. First, there will be relatively more obstacles in the environment. 

Second, the target person will not move along a certain fixed route. In other words, the 

route will be arbitrary. Third, there are persons, which may be unexpected, other than the 

target person wandering around in the environment. The objective of the examination is 

to verify the ability of the robot to carry out the person-tracking task in a more practical 

environment with unanticipated conditions. 

Figure 23 shows the procedure of this examination and the robot trajectory. The 

robot performs the ability to implement obstacle-avoidance and person-following tasks 

during several turns and even through a narrow corridor. In addition, the robot is only 

following the target person and not affected by the movements of other persons in the 

environment. Note that the robot will regard the persons other than the target person as 

obstacles when they are too close in range. According to the robot trajectory in the figure, 

the robot following the wrong person will not be an issue in this thesis, while this 

situation has always been a challenge for most applications of a vision-based mobile 

robot. 

 



 

Tt = Tt 2=

Tt 3= Tt 4=

Tt 5= Tt 6=

PositionTargetPositionRobot Obstacle PositionPersonTargetNon −:LEGEND

Figure 23.   Robot Trajectory in an unstructured environment. 

E. SUMMARY 
 In this chapter, four, main experiments to examine the person-tracking ability are 

presented. The first experiment is to verify the normal function of the mobile robot using 

a direct, person-tracking condition without any obstacle between the target person and the 

robot. The second experiment is to add an obstacle in the person-tracking task and 

examine the ability of the robot to implement obstacle avoidance and person-tracking 
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simultaneously. The third experiment is to examine the ability of the robot in a common 

situation, when the robot needs to maintain tracking the target during a turn at a corner. 

The fourth experiment is based on the examination of the robot’s behavior in a general 

environment, which is unstructured. According to the results of those experiments, the 

ability of the robot in implementing most general situations is ensured. 
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V. CONCLUSION AND FUTURE WORK 

A. CONCLUSION 
The main objective of this research was to investigate the feasibility of developing 

a person-tracking robot system using an RF/ultrasonic positioning system. In order to 

accomplish this objective, the following goals have been achieved in this thesis. 

1. Created the interface between the ultrasonic positioning system and the robot 

system in the operating program. 

2. Developed the design of the algorithm that is able to simultaneously avoid 

obstacles and track the designated person in an unstructured environment. 

3. Completed person-tracking experiment when there is no obstacle between 

the robot and the target person. 

4. Completed person-tracking experiment when there is an obstacle between 

the robot and the target person. 

5. Demonstrated person-tracking when the target person makes a turn at a 

corner. 

6. Exhibited person-tracking in an unstructured environment. 

During the implementation of the first goal, by using TCP/IP approach, the data 

developed by the ultrasonic positioning system can be utilized by the robot and analyzed 

from the remote workstation through the network. The interference issue between the 

ultrasonic positioning system and the sonar sensor system has been efficiently resolved 

by sequencing the execution order of those two systems. 

The second goal was achieved by designing the potential field algorithm along 

with the obstacle avoidance algorithm, which was developed from several main situations. 

In addition, the parameters used in the algorithm have been adjusted during various 

experiments. 

The rest of the goals were to investigate the ability of the mobile robot to 

accomplish the person-tracking task, utilizing the algorithm designed in Chapter III, 



which includes person-following and obstacle avoidance. According to the results of 

several experiments in Chapter IV, the goals have been reached. Since all the goals have 

been achieved, the feasibility of the main idea in this thesis was verified. 

B. FUTURE WORK 
Since the feasibility of developing a person-tracking mobile robot using an 

ultrasonic positioning system in unstructured environments has been ensured, the next 

step is to improve the efficiency of this system. 

The ultrasonic positioning system used in the implementation of a person-tracking 

mobile robot is a fixed system mounted on the robot. The effective target bearing for the 

system to detect the target signal is from  to . The robot may fail to track the 

target if the target person intentionally moves out of this range. In addition, while the 

robot is implementing obstacle avoidance, the increase in the bearing due to the turning 

of the robot could be a problem. Note that the robot will wander around in the 

environment until it detects the target signal again. 

o90− o90

An active ultrasonic positioning system may be a solution to this problem. The 

ultrasonic positioning system can maintain the line of sight to the target person and keep 

tracking the signal even when the robot is completing a turn. Another method to resolve 

this issue is to include an estimation model of the target person’s motion in the algorithm. 

The Kalman filter is one of the applications. Especially when the target person goes out 

of the ultrasonic sensor cone, this mechanism provides more accurate information for the 

robot, so that the robot is able to detect the target signal again in a relatively shorter time 

interval. Therefore, the overall function of a person-tracking mobile robot can be 

improved to operate in a more flexible manner. 

The ultrasonic positioning system and the sonar sensor system both operate using 

acoustic principles. Therefore, the robustness of the tracking system in an environment 

with sound-level noises can be examined in the future work.  
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APPENDIX 

 In this appendix, the C++/C code used to operate the overall system is presented 

as shown below. 

/************************************************************ 
 *                                                                                                                    * 
 *     PROGRAM: tracking_robot.c                                                               * 
 *                                                                                                                    * 
 *     PURPOSE: For the robot to follow the specific person and                 * 
 *                         to implement obstacle avoidance concurrently.                * 
 *                                                                                                                    * 
 *                            Edited by Chuan-Hao Yang                                            * 
 *                                                                                                                    * 
 ************************************************************/ 
 
/*** Include Files ***/ 
#include "Nclient.h" 
#include <iostream.h> 
#include <stdio.h> 
#include <sys/socket.h> 
#include <arpa/inet.h> 
#include <stdlib.h> 
#include <string.h> 
#include <unistd.h> 
#include <netinet/in.h> 
#include <math.h> 
 
/* macros to convert Nomad 200 motion commands to Scout motion commands */ 
#define ROT_CONST 0.118597   
#define RIGHT(trans, steer) (trans + (int)((float)steer*ROT_CONST)) 
#define LEFT(trans, steer)  (trans - (int)((float)steer*ROT_CONST)) 
#define scout_vm(trans, steer) vm(RIGHT(trans, steer), LEFT(trans, steer), 0) 
#define scout_pr(trans, steer) pr(RIGHT(trans, steer), LEFT(trans, steer), 0) 
 
/*** Constants ***/ 
#define TRUE 1 
#define FALSE 0 
#define BUFFSIZE 8 
 
/*** Function Prototypes ***/ 
void GetSensorData(void); 
void Movement(void); 
void GetUltrasonicData(void); 
void Exit(char *mess){perror(mess);exit(0);} 
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/*** Global variables ***/ 
long SonarRange[16];  /* array of sonar readings (inches) */ 
int BumperHit = 0;    /* boolean value */ 
/* variable for ultrasonic device connection */ 
int sock; 
struct sockaddr_in ultrasonic_server; 
char buffer[BUFFSIZE]; 
char *ultrasonic_server_ip="192.168.1.15"; 
char *ultrasonic_server_port="4000"; 
int distance,angle; 
 
 
/*** Main Program ***/ 
main (unsigned int argc, char** argv) 
{ 
  int i, index; 
  int oldx, oldy; 
  int order[16]; 
 
  /* Change the following port number to your own number*/ 
  SERV_TCP_PORT = 7770; 
  /* Connect to Nserver. The parameter passed must always be 1. */ 
  connect_robot(1);  
  /* Initialize Smask and send to robot. Smask is a large array that controls which data the 

robot returns back to the server. This function tells the robot to give us everything. */ 
  init_mask(); 
 
  /* Configure timeout (given in seconds). This is how long the robot will keep moving if 

it becomes disconnected.  
  conf_tm(1);   
   
  /* Sonar setup: configure the order in which individual sonar unit fires. In this case, fire 

all units in counter-clockwise order (units are numbered counter-clockwise starting 
with the front sonar as zero). The conf_sn() function takes an integer and an array of 
at most, 16 integers. If less than 16 units are to be used, the list must be terminated by 
an element of value -1. The single integer value passed controls the time delay 
between units in multiples of two milliseconds. Only use the front 5 sonar units in this 
case. */ 

  for (i=0; i<=2; i++)   
      { order[i] = i; } 
  for (i=14; i<=15; i++) 
      { order[i-11] = i; } 
  order[6]= -1; 
  conf_sn(25,order);       
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  /* Zero the robot. This aligns the turret and steering angles. The repositioning is 
necessary to allow the user to position the robot where it was. */ 

  oldx = State[34];                      /* remember position */ 
  oldy = State[35]; 
  zr();                                          /* tell robot to zero itself */ 
  ws(1,1,1,20);                            /* wait until done with zeroing */ 
  place_robot(oldx, oldy, 0, 0);  /* reposition simulated robot */ 
   
   
  /* Create connection with Ultrasonic Device */  
  if((sock = socket(PF_INET,SOCK_STREAM,IPPROTO_TCP))<0) 
  {Exit("Failed to create socket");} 
  memset(&ultrasonic_server,0,sizeof(ultrasonic_server)); 
  ultrasonic_server.sin_family = AF_INET; 
  ultrasonic_server.sin_addr.s_addr = inet_addr(ultrasonic_server_ip); 
  ultrasonic_server.sin_port = htons(atoi(&*ultrasonic_server_port)); 
  if(connect(sock,(struct sockaddr *)&ultrasonic_server,sizeof(ultrasonic_server))<0) 
  {Exit("Failed to connect with ultrasonic server");} 
 
  /* Main loop. */ 
  while (!BumperHit) 
    { 
       GetSensorData(); 
       GetUltrasonicData(); 
       Movement(); 
    } 
 
  /* Disconnect. */ 
  close(sock); 
  disconnect_robot(1);       
} 
 
 
/* Movement(). This function is responsible for using the sensor data to direct the robot's 

motion appropriately. */ 
void Movement (void) 
{ 
  int m,i; 
  int nearsomething_right,nearsomething_left,nearsomething_front; 
  int tvel, svel; 
  double F_target[2],F_sonar[2],F_total[2]; 
  int k1 = 15; 
  int k2 = 20; 
  int k3 = 1; 
  int k4 = 10; 
  float k5 = 0.75; 
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  double gain_tvel = 0.1; 
  double gain_svel = 0.1; 
  int gain_svel_near_target = 2; 
  float theta; 
 
  /* Make sure we are not about to run into something; check the front sonar sensors. If it 

looks bad, set nearsomething_*.  */ 
  nearsomething_right = FALSE; 
  nearsomething_left = FALSE; 
  for (i = 14; i <= 15; i++) 
    if (SonarRange[i] < 12 ) nearsomething_right = TRUE; 
  for (i = 1; i <= 2; i++) 
    if (SonarRange[i] < 12 ) nearsomething_left = TRUE; 
  for (i = 0;i <= 0; i++) 
    if (SonarRange[i] < 12 ) nearsomething_front = TRUE; 
 
  /* Set limit for the angle */ 
  if (angle > 90) {angle = 90;} 
  if (angle < -90) {angle = -90;} 
 
  /* Compute the attractive force (Equation 3.1~3.8)*/ 
  theta=(360/16)*(3.14/180); 
  F_target[0] = (distance*cos(angle*3.14/180)); 
  F_target[1] = (distance*sin(angle*3.14/180)); 
  F_sonar[0] = 0; 
  F_sonar[1] = 0; 
  for(m=0;m<=2;m++) 
  { F_sonar[1] = F_sonar[1]+(SonarRange[m]*sin(m*theta)); } 
  for(m=14;m<=15;m++) 
  { F_sonar[1] = F_sonar[1]+(SonarRange[m]*sin(m*theta)); } 
  /* Limit for the sonar attractive force */ 
  if (abs((int) F_sonar[1]) >= k5*abs((int) F_target[1])) 
  { 
     F_sonar[1] =(double) k5*abs((int) F_target[1])*(F_sonar[1]/abs((int) F_sonar[1])); 
  } 
 
  F_total[0] = k1*F_target[0]+k3*F_sonar[0];   /* The resultant force in x-axis */ 
  F_total[1] = k2*F_target[1]+k4*F_sonar[1];   /* The resultant force in y-axis */ 
 
 
  /* Decide how to move. There are five situations: 1) near target, 2) near something on 

the right, 3) near something on the left, 4) in front of something, 5) clear to move. */ 
  if (distance < 65)  /* Equation 3.11, 3.12 */ 
    {  
       tvel = 0;  
       svel = (int) (gain_svel_near_target*F_target[1]); 
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       if (abs(angle) <= 10) { svel = 0; } 
    } 
  else if (nearsomething_right&!nearsomething_left)   /* Equation 3.13 */ 
    { 
       tvel = 0;      /* stop moving, and make a turn. */ 
       svel = 110; 
    } 
  else if (nearsomething_left&!nearsomething_right)   /*Equation 3.14 */ 
    { 
       tvel = 0;      /* stop moving, and make a turn. */ 
       svel = -110; 
    } 
  else if (nearsomething_front&nearsomething_right&nearsomething_left) 
    {                                                                                  /* Equation 3.15 */ 
       if (angle >= 0) 
       { 
          tvel = 0;   /* stop moving, and make a turn. */  
          svel = 150; 
       } 
       else 
       { 
          tvel = 0;   /* stop moving, and make a turn. */ 
          svel = -150; 
       } 
    } 
  else  /* it is clear to move */ 
    { 
       svel = (int) (gain_svel*F_total[1]);  /* Equation 3.9 */ 
       tvel = (int) (gain_tvel*F_total[0]);   /* Equation 3.10 */ 
    } 
  /* limit the translation velocity */ 
  if(abs(tvel)>120) {tvel=120*tvel/abs(tvel);} 
   
  /* Set the robot's velocities. The first parameter is the robot's translation velocity, in 

tenths of an inch per second. This velocity can be between -240 and 240. The second 
parameter is the steering velocity, in tenths of a degree per second, and can be 
between -450 and 450. */ 

  scout_vm(tvel,svel); 
  printf("%d,%d\n",distance,angle); 
} 
 
 
/* GetSensorData(). Read in sensor data and load into arrays. */ 
void GetSensorData (void) 
{ 
  int i; 
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  /* Read all sensors and load data into State array. */ 
  gs(); 
 
  /* Read State array data and put readings into individual arrays. */ 
  for (i=0; i<16; i++) 
    { 
      /* Sonar ranges are given in inches, and can be between 6 and 
      255, inclusive. */ 
      SonarRange[i] = State[17+i]; 
    } 
 
  /* Check for bumper hit. If a bumper is activated, the corresponding bit in State[33] will 

be turned on. Since we don't care which bumper is hit, we only need to check if 
State[33] is greater than zero. */ 

  if (State[33]>0) 
    { 
      BumperHit = 1; 
      tk("Ouch."); 
      printf("Bumper hit!\n"); 
    } 
} 
 
 
/* GetUltrasonicData(). Read in ultrasonic data. */ 
void GetUltrasonicData(void) 
{  
  int i,j; 
  int byte,bytes,n; 
  char buff[5*BUFFSIZE]; 
  while(bytes = recv(sock,buffer,BUFFSIZE-1,0)) 
  { 
     buffer[bytes] = '\0'; 
     strcpy(buff,buffer); 
     for (n = 1;n <= 4;n++) 
     { 
        byte = recv(sock,buffer,BUFFSIZE-1,0); 
        buffer[byte] = '\0'; 
        bytes = bytes+byte; 
        strcat(buff,buffer); 
     } 
     for (i = 0;i < bytes;i++) 
     { 
        if (buff[i] == '~') 
        { 
           for (j = i+1;j < bytes;j++) 
           { 
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              if (buff[j] == ' ') 
              { 
                  distance = atoi(&buff[i+1]); 
                  angle = atoi(&buff[j+1]); 
                  return; 
               } 
            } 
            break; 
        } 
     } 
  } 
 
} 
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